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In the last three decades, researchers have tried to identify universal patterns in the structure of food webs.
It was recently proposed that the exponent � characterizing the efficiency of the transport of energy in large
and small food webs might have a universal value ��=1.13�. In this work we establish lower and upper bounds
for this exponent in a general spanning tree with a fixed number of trophic species and levels. When the
number of species is large, the lower and upper bounds are equal to 1, implying that the result �=1.13 is due
to finite-size effects and that the value of this exponent depends on the size of the web. We also evaluate
analytically and numerically the exponent � for hierarchical and random networks. In all cases the exponent �
depends on the number of trophic species K, and when K is large we have that �→1. Moreover, this result
holds for any fixed number M of trophic levels.
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I. INTRODUCTION

Understanding energy and material fluxes through ecosys-
tems is a prime objective to answer many questions in ecol-
ogy �1–3�. Ecological communities can be studied via re-
source transfer in food webs �4�. These webs are diagrams
showing the predation relationships among species in a com-
munity. Usually, a group of species sharing the same set of
predators and preys is aggregated in one trophic species
�5,6�. So each trophic species is represented by a node and
denoted by an integer number i=1, . . . ,K, where K is the
total number of trophic species. A relation between a pair of
nodes is represented by a link directed from the prey to
predator. There are several quantities introduced in the litera-
ture to characterize the food web structure, such as the frac-
tions of the species in the trophic levels �basal, intermediates,
and top�, the fractions of links among them, the connectance,
the average distance between two nodes, the clustering coef-
ficient, and the degree distribution. It turns out that all these
quantities are nonuniversal �7� and dependent on the size of
the food web. Possibly, the only variable with common
agreement in the literature is the maximum number of
trophic levels �M �4�. Garlaschelli et al. �8� have considered
food webs as transportation networks �10,11� whose function
is to deliver resources from the environment to every species
in the network. In this case, food webs appear to be very
similar to other systems with an analogous function, such as
river and vascular networks. In their work they have repre-
sented a real food web by spanning trees with minimal
lengths. For each species i the number Ai of species feeding
directly or indirectly on i plus itself, or plus 1, is computed.
We can interpret Ai as the quantity of resources flowing
through the only incoming link of species i in the food web,
being independent of the topology of the network. They also

computed the sum of link weights within the branch ��i�
rooted at i: namely, Ci=�k���i�Ak. By analogy with river net-
works, Garlaschelli et al. �8� have interpreted Ci as the trans-
portation cost and it is dependent on the network topology.

The shape of Ci as a function of Ai follows a power-law
relation C�A��A�, where the scaling exponent � quantifies
the degree of optimization of the transportation network.
They found the same allometric scaling relation for different
food webs. By plotting Ci versus Ai for each one of the seven
largest food webs in the literature and by plotting C0 versus
A0 for a set of different food webs, they found that the ex-
ponent varies between 1.13 and 1.16. Therefore, they con-
cluded that the exponent � has a universal value ��=1.13�
and it is one of the few known universal quantities in food
webs. Nevertheless, this matter has been the subject of de-
bates �13,14�. It is worth mentioning that the distribution of
the number of prey �predator� is another universal quantity
�12�.

Observe that connecting structure to function, or structure
to dynamics, has always been a primary aim of ecologists,
but the tools for structural analysis are very poor compared
to the arsenal of dynamics analysis �9�. We need to know
how to link certain network properties to understanding and
predicting the behavior of an ecosystem.

Here we establish upper ��max� and lower ��min� bounds
for the exponent � in a general spanning tree network with
M trophic levels and K trophic species, both fixed. In the
limit K→�, we have that �max=�min→1. We also evaluate
analytically and numerically the exponent � for hierarchical
and random networks. Our main conclusions are that �a� the
result �=1.13 for food webs is due to finite-size effects
�small K� and �b� the exponent � depends on K, so it is
different for small and large food webs, and when K is large
we have �=1. This last result implies that large food webs
are efficient resource transportation networks. Moreover,
these results hold for any number M of trophic levels.

It is worth mentioning that this problem is related to river
and vascular networks �10�. Consider K sites uniformly dis-
tributed in a d-dimensional volume. The network is con-
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structed by linking the sites in such way that there is at least
one path connecting each site to the source �a central site�.
Since each site is feed at steady rate Fi=F, the metabolic rate
B clearly is given by B=�iFi=FK. Let Ib represent the mag-
nitude of flow on the bth link. Then, the total quantity of
nutrients in the network, at a particular time, is given by V
=�bIb. Banavar et al. �10� define the most efficient class of
network as that for which V is as small as possible. Using
this procedure they found V�B�d+1/d�. For river basins, d
=2 and V�B3/2. In vascular systems V�B4/3 since d=3. The
variables A0 and C0 of the food webs are related, respec-
tively, to the number of transfer sites K and the total volume
of nutrients V by the following equations: K=A0−1 and V
=C0−A0. Then we have that C0�A0

�d+1/d� if A0 is large
enough. The value of the exponent � for a food web can be
smaller than the one of rivers ��=3/2� or the one of vascular
systems ��=4/3� because the spanning tree of a food web is
not embedded in a Euclidean space.

II. GENERAL HIERARCHICAL MODEL

Let us consider a hierarchical network with M trophic
levels. The network is constructed in the following way. We
begin with a node representing the environment, node 0.
Then we connect n1 nodes to it. Since these nodes are feed-
ing directly on the environment, they constitute the first
trophic level. Obviously, the number of species in this level
is N1=n1. The second level is constructed by connecting n2
nodes to each node of the first level. Now, in this level, we
have N2=n1n2 species. This procedure is repeated until level
M.

Since Ai is the number of species feeding directly or in-
directly on node i, plus itself, we have that

AM = 1,

AM−1 = nMAM + 1 = nM + 1,

AM−2 = nM−1AM−1 + 1 = nMnM−1 + nM−1 + 1,

]

A0 = 1 + �
�=1

M

N� = K + 1.

The cost of resource transfer, defined by Ci=�kAk, where
k runs over the set of direct and indirect predators of i plus
itself, is given by

CM = 1,

CM−1 = nMCM + AM−1 = 2nM + 1,

CM−2 = nM−1CM−1 + AM−2 = 3nMnM−1 + 2nM−1 + 1,

]

C0 = 1 + �
�=1

M

�� + 1��
i=1

�

ni = 1 + �
�=1

M

�1 + ��N�.

The exponent �, as was proposed in the literature �8�, can
be found by �a� plotting Ci as a function of Ai for a network
with number of trophic levels M, and total species number K
fixed. Usually, the point �1,1� is neglected due to finite-size
effects. It can be also found by �b� plotting C0 as a function
of A0 for several networks with different trophic species
number K. This last procedure determines the large-scale ex-
ponent �14�. Note that in hierarchical spanning tree net-
works, Ci and Ai for species in the same trophic level are
equal, implying that we have only M +1 points in a Ci�Ai
plot. Let us first use procedure �a� for networks with constant
ramification ratio ni=n and constant number of trophic levels
M =4. We find �=1.39 for n=2 and K=30 and �=1.27 for
n=3 and K=120, as is shown in Fig. 1. Clearly, the exponent
� depends on value of K and decreases as long as K grows.
In the limit that n→�, the total number of species K is
unlimited and the exponent � approaches the value 1.

Let us return to the more general case of hierarchical
models. The large-scale exponent � can be evaluated by

� =
ln C0

ln A0
=

ln	1 + �
�=1

M

�� + 1��
i=1

�

ni

ln�1 + �

�=1

M

�
i=1

�

ni� . �1�

If at least one ramification ratio is large, n�→�, we have
that ln A0� ln n� and ln C0� ln n�. Therefore we find �→1
when the number of species is large. We can also use Eq. �1�
to evaluate the exponent � for hierarchical networks with
constant ramification ratio. We found for this networks �
=1.41 �n=2 and K=30� and �=1.31 �n=3 and K=120�.
These values can be compared with the ones obtained previ-
ously with procedure �a� �see Fig. 1�.

In Eq. �1� the exponent � depends on the value of K,
decreasing as long as K grows. For example, consider the
hypothetical food web with total species trophic number K
=146 and the species trophic numbers in each level given by
N1=38, N2=63, N3=43, and N4=2. We find the exponent
�=1.22. But if we double the number of trophic species in
each trophic level Ni=2Ni, the exponent is now ��1.19. In
that equation the exponent � also depends on the relative

FIG. 1. �Color online� Log-log plots of Ci versus Ai for net-
works with constant ramification ratio n=2 and n=3. Note that the
exponent decreases when n grows.
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distribution of the species in each level, for a given total
species number K. For the hypothetical food web described
above with 146 trophic species we change the distributions
of species in each level to N1=114, N2=20, N3=10, and
N4=2. We find the exponent �=1.16. The exponent has
changed from �=1.22 to �=1.16.

III. RANDOM NETWORKS

Now, let us consider a random network with M trophic
levels and K trophic species. The network is constructed in
the following way. First, we determine randomly the popu-
lation in each level N� ��=1,2 , . . . ,M�, obeying the restric-
tions M fixed and K fixed. Then, the N1 nodes are connected
to the environment, constituting the first trophic level. The
second level is constructed by randomly connecting the N2
nodes to the N1 nodes of the first level. This procedure is
repeated until level M is constructed. In Fig. 2 the Ci�Ai
graph is shown for two different random networks with K
=123 and M =4.

Note that the exponent � depends on the relative distribu-
tion of species in each level. Therefore, a mean value for this
exponent can give us a better description. We can evaluate
the mean value of Ai and Ci in each level by

Ā� =
1

N�
�
j��

Aj ,

C̄� =
1

N�
�
j��

Cj .

Here � specifies the trophic level ��=1, . . . ,M�. These quan-
tities are averaged on several random configurations.

In Fig. 3�a� the C̄�� Ā� graph is shown for random net-
works with K=123 �the number of trophic species of the
Ythan Estuary web with parasites �8�� and M =4. A best fit
furnishes �=1.18. A similar fit for K=93 �the number of
trophic species of the Little Rock Lake food web �8�� and
M =4 gives us �=1.21. Note that the exponent decreases
when K increases. Clearly, our exponent is larger than that
found by Ref. �8� for the same trophic species number K. But
when K grows our exponent becomes smaller than theirs.
Obviously, if �=1.13 represents a universal value for food
webs of all sizes, then random spanning trees networks with
the same number of trophic levels M are more efficient than

food webs. In Fig. 3�b� the C̄�� Ā� graph is shown for a
random network with K=10 000 and M =4. Note that when
K is large enough we have that ��1.

The exponent � can also be computed by procedure �b�.
For each value of K we evaluate an average for several con-
figurations and find the mean value of C0. In Fig. 4�a�, the
C0�A0 plot is shown for random networks with M =4 and K
varying from 50 up to 1000. Now we have that �=1.00. It is
worth mentioning that C0�A0 always furnishes �=1 inde-
pendently of the range of K. We have also simulated random
networks with M =10 trophic levels. In Fig. 4�b� the C0
�A0 plot is shown. The results are similar.

IV. UPPER AND LOWER BOUNDS FOR THE EXPONENT

The main point of this paper is to develop a general argu-
ment to demonstrate that the large-scale exponent is �=1 for

FIG. 2. �Color online� Log-log plots of Ci versus Ai for two
different random networks.

FIG. 3. �Color online� Log-log plots for random networks. �a�
C̄�� Ā� for a network with K=123 and M =4. �b� C̄�� Ā� graph
for a random network with K=10 000 and M =4. Note that when K
is large enough the exponent is ��1.
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large K and for a fixed value of M. Let us consider a span-
ning tree with M and K, both fixed. To obey the constraint of
M fixed, we put one node in each level. Now we must put in
the levels each one of the reminder K−M nodes. Since C0 is
cumulative, a node that is put as near as possible of the
environment has a minimal contribution to the global cost.
On the other hand, a node put as far as possible of the envi-
ronment has a maximal contribution to C0. To construct the
network with maximum value of cost, C0,max, we must link
all K−M nodes to the node of the last level. In this network
we have N1=N2= ¯ =NM−1=1 and NM =K−M +1. C0,min is
obtained by linking the K−M nodes directly to the node
representing the environment. In this case, we have that N1
=K−M +1 and N2=N3= ¯ =NM =1. Note that these con-
structions are the closest networks to the starlike and chain-
like ones, respectively, that obey the constraints of M and K
fixed. Using Eq. �1� we have that

C0,min = 1 + 2K +
M

2
�M − 1� ,

C0,max = 1 + K�M + 1� +
M

2
�1 − M� .

Then, the lower and the upper bounds for the exponent � are

�max =
ln C0,max

ln�K + 1�
=

ln	1 + K�M + 1� +
M

2
�1 − M�


ln�K + 1�
,

�min =
ln C0,min

ln�K + 1�
=

ln	1 + 2K +
M

2
�M − 1�


ln�K + 1�
.

When M is fixed and K→�, we have that �max=�min→1.
Consider again the simulation of random networks. We

verified that the constructions with minimum and maximum
C0 are the ones just described. Moreover, the result above
explains why we find that �→1 when K is large in the
simulations of random networks.

V. SUMMARY

In summary, we studied the transportation properties of
several networks that represent spanning trees of food webs.
First, we analyzed and idealized a hierarchical model that
can be solved analytically. Then we showed that the expo-
nent � depends on the value of K and, when K is large
enough, the exponent � approaches the value 1. We con-
structed random networks that represent more realistically a
spanning tree formed by food webs. We evaluated numeri-
cally the exponent � by several procedures. For all the cases
we observed that the exponent depends on the size of the
web and, if K is large, we have that �→1. An important
mark is that all the results are independent of the number of
trophic levels, M. Moreover, we establish maximum and
minimum values for the exponent � in a general spanning
tree with K and M fixed. When M is fixed and the number of
species is large these values became equal to 1. Therefore,
we can conclude that �=1 for a large food web and that large
food webs are efficient resource transportation systems, in
the sense that they have smaller cost to transport resources
than networks with �	1.
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